
Case Study
Software

Figure 1. TenCent File System* Image Processing

Speeding MD5 Image Identification by 2x

TenCent Optimizes Image Identification

Tencent, Inc., is China’s largest and most-used Internet service portal. It owns
both the largest online game community and the largest Web portal (qq.com), as
well as the No. 1 and No. 2 applications (WeChat*, QQ*) in China.

Every day, Tencent needs to process billions of new user-generated images from
WeChat, QQ, and QQ Album*. Some hot applications even have hundreds of mil-
lions of images to be uploaded, stored, processed, and downloaded in a single
day―which consumes vast computing resources.

To manage, store, and process these images, Tencent developed Tencent File Sys-
tem* (TFS*). But even with compression, the image volume reached hundreds of
petabytes. Moreover, it is still growing explosively―and the supported cluster has
more than 20,000 servers.

Technical Background

Based on TFS, the image processing system provides uploading, scaling, encod-
ing, and downloading services. As an image uploads, TFS scales it into a different
resolution and creates the related ID by Message Digest Algorithm 5 (MD5).1 Next,
the image is transcoded into WebP* format for storage. While downloading an
image, the system must find the right place to read the image, and then transcode
it into the user-required image format and resolution (Figure 1).

Intel® Integrated Performance Primitives

High-Performance Computing

“Through close collaboration
with Intel engineers, we

adopted the Intel® Integrated
Performance Primitives library

for the image identification
component in our online

image storage and processing
application. The application’s

performance improved
significantly, and our cost of
operations reduced greatly.

We really appreciate the
collaboration with Intel and

are looking forward to
more collaboration.”

―Nicholas,
Leader of the TFS-Based

Image Storage and Processing Team,
TenCent

Figure 2. SIMD Operation on 8 Data Instructions

Speeding MD5 Image Identification by 2x 2

Because the website has tons of visits
each second, there’s a small possibility
that the image download component will
read the wrong image. Avoiding this kind
of error requires an MD5 calculation and
check. However, this is a huge computing
workload―so Tencent needed to maxi-
mize MD5 computing performance.

Originally, Tencent used the md5sum*
utility tool along with the Operator* OS to
compute the MD5 value for each image
file. Intel worked closely with Tencent en-
gineers to help them optimize perform-
ance with Intel® Integrated Performance
Primitives (Intel® IPP)―which helped Ten-
cent achieve a 100 percent performance
improvement on the Intel® architecture-
based platform.

Intel® Streaming SIMD Extensions
and Software Optimization
Intel introduced an instruction set exten-
sion with the Intel® Pentium® III processor
called Intel® Streaming SIMD Extensions
(Intel® SSE). This was a major redesign of
an earlier single-instruction, multiple-data
(SIMD) instruction set called MMX®, intro-
duced with the Intel Pentium processor.

Intel evolved the Intel SSE instruction
set along with Intel architecture, extend-
ing it by wider vectors and adding a new
extensible syntax and rich functionality.
The latest SIMD instruction set, Intel®
Advanced Vector Extensions 2 (Intel®
AVX2), can be found in the Intel® Core™
i7 processor.

Most of the Intel® Xeon® processors in the
TFS system support Intel SSE2, one of

the Intel® SIMD processor supplemen-
tary instruction sets. Intel SSE2 is sup-
plemented by Intel SSE3, Intel SSE4.x,
and Intel Advanced Vector Extensions
(Intel AVX).

Intel AVX is a 256-bit instruction set ex-
tension to Intel SSE, designed to provide
even higher performance for applications
that are compute-intensive. Intel AVX
adds new functionality to the Intel SIMD
instruction set (based on Intel SSE) on
floating-point and integer computing,
and it includes a more compact SIMD in-
struction set.

Figure 2 shows one SIMD operation on
eight data (32-bit integer type, floating
point type) instructions.

Intel AVX improves performance by ex-
tending the breadth of vector processing
capability across floating-point and inte-
ger data domains. This results in higher
performance and more efficient data
management across a wide range of ap-
plications such as image and audio/
video processing, scientific simulations,
financial analytics, and 3D modeling and
analysis.

Algorithms That Benefit from Intel SSE
Algorithms that can benefit from Intel
SSE2 include those that employ logical or
mathematical operations on data sets
larger than a single 32-bit or 64-bit word.
Intel SSE uses vector instructions, or
SIMD architecture, to complete opera-
tions such as bitwise XOR, integer or
floating-point multiply-and-accumulate,
and scaling in a single clock cycle for mul-

Higher Performance and More Efficient Data
Management Across a Wide Range of Applications

tiple 32-bit or 64-bit words. Speed-up comes
from the parallel operation and the size of
the vector (multiword data) to which each
mathematical or logical operator is applied.

Examples of algorithms that can signifi-
cantly benefit from SIMD vector instruc-
tions include:

• Image processing and graphics.
Both scale in terms of resolution
(pixels per unit area) and the pixel
encoding (bits per pixel to represent

Table 1. Intel® IPP Features

Table 2. Processor-Specific Codes

Optimized for
Performance and
Power Efficiency

• Highly tuned routines

• Highly optimized
using SSSE4, SSSE3,
Intel® SSE, and Intel®
AVX2, Intel® AVX12
instruction sets

• Performance beyond
what an optimize
compiler produces
alone

Wide Range of Cross-
Platform and OS

Functionalities

• Thousands of highly
optimized signal,
data, and media
functions

• Broad domain sup-
port

• Supports Intel®
Quark™, Intel® Core™,
Intel® Xeon®, and
Intel® Xeon Phi™
platforms

Intel Engineered and
Future-Proofed to

Shorten Development Time

• Fully optimized for
current and past
processors

• Saves development,
debug, and mainte-
nance time

• Code once now,
receive future opti-
mizations later

Associated with Power-Specific Libraries

px

W7

v8

P8

g9

h9

mx

m7

u8

y8

e9

i9

Generic code optimized for processors with Intel®
Streaming SIMD Extensions (Intel® SSE)

Optimized for processors with Intel SSE2

Optimized for processors with Intel SSE3

Optimized for processors with Supplemental
Streaming SIMD Extensions 3 (SSSE3), including
Intel® Atom™ processor

Optimized for processors with Intel SSE4.1

Optimized for processors with Intel® Advanced Vec-
tor Extensions (Intel® AVX) and Intel® Advanced En-
cryption Standard New Instructions

Optimized for processors with Intel AVX2

intensity and color) and both bene-
fit from speedup relative to pro-
cessing frame rates.

• Digital signal processing (DSP).
Samples digitized from sensors and
instrumentation have resolution like
images as well as data acquisition
rates. Often, a time series of digi-
tized data that is one-dimensional
will still be transformed using algo-
rithms, like a DFT (Discrete Fourier

Transform) that operate over a large
number of time series samples.

• Digest, hashing, and encoding.
Algorithms used for security, data
corruption protection, and data loss
protection such as simple parity,
CRC (cyclic redundancy check), MD5,
SHA (secure hash algorithm), Galois
math, Reed-Solomon encoding, and
CBC (cypher-block-chaining) all
make use of logical and mathemati-
cal operators over blocks of data,
often many kilobytes in size.

• Data transformation and data
compression. Most often, simula-
tions in engineering and scientific
computing involve data transforma-
tion over time and can include grids
of data that are transformed. For
example, in physical thermodynam-
ic, mechanical, fluid-dynamic, or
electrical-field models, a grid of
floating-point values is used to rep-
resent the physical fields as finite
elements. These finite element grids
are then updated through mathe-
matical transformations over time
to simulate a physical process.

Optimized for Performance
Intel IPP is a performance building block
for all kinds of image and signal pro-
cessing, data compression, and cryptog-
raphy needs. These ready-to-use,
royalty-free functions are highly opti-
mized using Intel SSE and Intel AVX and
Intel AVX2 instruction sets, which often
outperform what an optimized compiler
can produce alone.3

Table 1 summarizes the features of Intel IPP.

The Intel IPP library is optimized for a
variety of SIMD instruction sets. Besides
the optimization, Intel IPP also provides
an automatic “dispatching” mechanism,
which can detect the SIMD instruction
set that is available on the running
processor and select the optimal SIMD
instructions for that processor.

Table 2 shows processor-specific codes
that Intel IPP uses.

Speeding MD5 Image Identification by 2x 3

Most Linux*-based operating systems in-
clude md5sum utilities in their distribu-
tion packages.

The Intel IPP MD5 functions apply hash
algorithms to digesting streaming mes-
sages. It uses a state context (for example,
ippsSHA1State) as an operational vehicle
to carry all necessary variables to manage
the computation of the chaining digest
value. For example, the primitive imple-
menting the MD5 hash algorithm must
use the ippsMD5State context. The func-
tion Init initializes (MD5Init) the context
and sets up specified initialization vec-
tors. Once initialized, the function Update
(MD5Update) digests the input message
stream with the selected hash algorithm
until it exhausts all message blocks. The
function Final (MD5Final) is designed to
pad the partial message block into a final
message block with the specified padding
scheme. It then uses the hash algorithm
to transform the final block into a mes-
sage digest value.

Here is an example illustrating how the
application code can apply the imple-
mented MD5 hash standard to digest the
input message stream:

1. Call the function MD5GetSize to get
the size required to configure the
ipps MD5State context.

2. Ensure that the required memory
space is properly allocated. With the
allocated memory, call the MD5Init

See Understanding CPU Dispatching in
the Intel® IPP Library for more informa-
tion on dispatching. For more information
on Intel IPP functions optimized for Intel
AVX, read the article Intel® IPP Functions
Optimized for Intel® AVX.

MD5 in Intel IPP
Hash functions are used in cryptography
with digital signatures and for ensuring
data integrity. When used with digital sig-
natures, a publicly available function
hashes the message and signs the result-
ing hash value. The party that receives the
message can then hash the message and
check if the block size is authentic for the
given hash value.

Hash functions are also referred to as
“message digests” and “one-way encryp-
tion functions.” To ensure data integrity,
hash functions are used to compute the
hash value that corresponds to a particu-
lar input. Then, if necessary, you can
check if the input data has remained un-
modified. You can recompute the hash
value again using the available input and
compare it to the original hash value. Intel
IPP has implemented the following hash
algorithms for streaming messages:

• MD5 [RFC 1321]

• SHA-1

• SHA-224

• SHA-256

• SHA-384

• SHA-512 [FIPS PUB 180-2]

These algorithms are widely used in en-
terprise applications.

A Closer Look at MD5
MD5 is a widely used cryptographic hash
function producing a 128-bit (16-byte)
hash value, typically expressed in text for-
mat as a 32-digit hexadecimal number.

Although MD5 was considered as “cryp-
tographically broken and unsuitable” in a
strict environment, it has been widely
used in the software world to provide
some assurance that a transferred file has
arrived intact. For example, file servers
often provide a precomputed MD5
(known as md5sum) checksum for the
files, so that a user can compare the
checksum of the downloaded file to it.

Speeding MD5 Image Identification by 2x

function to set up the initial context
state with the MD5-specified initial-
ization vectors.

3. Keep calling the function MD5Update
to digest the incoming message
stream in the queue until its comple-
tion. To determine the current value
of the digest, call MD5GetTag
between the two calls to MD5Update.

4. Call the function MD5Final for
padding the partial block into a final
MD5-1 message block and transform
it into a 160-bit message digest
value.

5. Clean up secret data stored in the
context.

6. Call the operating system memory
free service function to release the
ippsMD5State context.

Intel engineers optimized Intel IPP func-
tions mainly by the vectorization, or SSE
instruction, and by extracting Intel archi-
tecture such as cache utilization, registers
reutilization, etc. With respect to Intel IPP
MD5 implementation, the optimized tech-
nique is used:

• Fully unrolled code instead of tiny
loop

• Using cyclic registers permutation
instead of memory operations

Table 3. Code Example

md5sum code IPP MD5

4

https://software.intel.com/en-us/articles/intel-integrated-performance-primitives-intel-ipp-understanding-cpu-optimized-code-used-in-intel-ipp?utm_campaign=CMD&utm_source=&utm_medium=PDF&utm_content=PUM24
https://software.intel.com/en-us/articles/intel-ipp-functions-optimized-for-intel-avx-intel-advanced-vector-extensions?utm_campaign=CMD&utm_source=&utm_medium=PDF&utm_content=PUM24

Speeding MD5 Image Identification by 2x

• Coding rotations immediately
instead of general parameterized
32-bit rotation

The Intel IPP code replaced the md5sum.
With the code shown in Table 3, no
more manual optimization was needed.

Invoking Intel IPP to Accelerate MD5
The Intel IPP MD5 code, md5test.cpp,
is compiled using gcc as follows:

[root@localhost code]# make -f
Makefile.gcc
g++ -O2 ipp_md5.cpp –o ipp_md5
-I/opt/intel/compilers_and_li-
braries_2016.0.109/linux/ipp/i
nclude
/opt/intel/compilers_and_li-
braries_2016.0.109/linux/ipp/l
ib/intel64/
libippcp.a /opt/intel/compil-
ers_and_libraries_2016.0.109/l
inux/ipp/lib/
intel64/libippcore.a
This integrates the IPP crypto library
into the program and extracts perform-
ance from the computing resources au-
tomatically. Figure 3 is a screen shot of
Intel® VTune™ Amplifier XE running the
ipp_md5 program. It shows the ipp
function e9_ippsMD5Update takes most
of the CPU time of the program where
e9 (AVX-optimized) code was running.

Performance Data
The test was run based on different sizes
of image files using Intel IPP and
md5sum provided by the Linux OS. Using
10,000 iterations resulted in the per-
formance shown in Table 4 and Figure 4.

On the Intel® Xeon® processor E5-2620
(15M Cache, 2.00 GHz, 7.20 GT/s Intel®
QuickPath Interconnect, Intel AVX-sup-
ported), comparing the md5sum along
with Linux showed a 100 percent per-
formance improvement. Tencent engi-
neers also implemented Intel IPP MD5
for their online system. Their test
showed about a 60 percent perform-
ance improvement compared to the
original MD5.

Figure 3. Intel® vTune™ Amplifier running the ipp_md5 program

Table 4. Test Run Performance Results

IPP_Md5 (Average
Time for 10,000

Iterations)

95 ms
189 ms
369 ms
740 ms

1,183 ms
2,943 ms

Processor OS

Intel® Xeon®
processor E5-2620
(15M cache, 2.0
GHz, 7.20 GT/s,
Intel® QuickPath
Interconnect, Intel®
Advanced Vector
Extensions-sup-
ported CentOS
6.5)i9

Test Image Size

4K
8K

16K
32K
64K

128K

md5sum (Average
Time for 10,000

Iterations)

206 ms
406 ms
789 ms

1,574 ms
2,420 ms
6,273 ms

Figure 4. Test run performance

5

 1md5sum on Wikipedia.
 2Using Intel® Streaming SIMD Extensions and Intel® Integrated Performance Primitives to Accelerate Algorithms.
 3Intel® AVX Realization of IIR Filter for Complex Float Data.

 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service activation.
 Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer, or learn more at www.intel.com.
 Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and

SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to www.intel.com/perfor-
mance.

 Intel does not control or audit the design or implementation of third party benchmark data or Web sites referenced in this document. Intel encourages all of its customers to visit the referenced Web sites
or others where similar performance benchmark data are reported and confirm whether the referenced benchmark data are accurate and reflect performance of systems available for purchase.

 This document and the information given are for the convenience of Intel’s customer base and are provided “AS IS” WITH NO WARRANTIES WHATSOEVER, EXPRESS OR IMPLIED, INCLUDING ANY IM-
PLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. Receipt or possession of this document does not
grant any license to any of the intellectual property described, displayed, or contained herein. Intel® products are not intended for use in medical, lifesaving, life-sustaining, critical control, or safety sys-
tems, or in nuclear facility applications.

 Copyright © 2016 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
* Other names and brands may be claimed as the property of others. Printed in USA 0316/SS Please Recycle

tationally intensive methods by optimiz-
ing them for the latest Intel® hardware
using the Intel IPP and performance-
tuning methodologies.

.Learn more about Intel® Integrated
Performance Primitives

Conclusion
Tencent has billions of new user-gener-
ated images to process every day from
WeChat, QQ, and QQ Album. All images
are handled by the TFS-based image
storage and processing system. Tencent
has to give each image a unique ID by
MD5 hash. Intel worked with Tencent

engineers to optimize this function com-
ponent using Intel IPP, achieving a 2x
performance improvement.

Methods for improving the speed of
computing the md5sum of images is
straightforward with Intel IPP. This work
demonstrates significant progress to-
ward being able to handle these compu-

https://software.intel.com/en-us/intel-ipp

